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Abstract. In this paper we construct a new Lax operator for the ellipticAn−1 Calogero–Moser
model with generaln (n > 2) from the classical dynamical twisting, in which the corresponding
r-matrix is purely numerical (non-dynamic). The non-dynamicalr-matrix structure of this Lax
operator is obtained, which is the ellipticZn-symmetricr-matrix.

1. Introduction

A general description of classical completely integrable models ofn one-dimensional particles
with two-body interactionsV (qi − qj ) was given in [24]. With each simple Lie algebra and
choice of one of these types of interactions one can associate a classically completely integrable
systems [5, 13, 23, 24]. The most general form of the potential in such models is the so-
called elliptic Calogero–Moser (CM) model with an elliptic interaction potential. The various
degeneracies of this general system yield the rational CM model (type I in [5]), the hyperbolic
CM model (type II in [5]) and the trigonometric CM model (type III in [5]). So, the study of
the elliptic CM model is of great importance in completely integrable particle systems.

The Lax pair representation (Lax representation) of a completely integrable system, which
means that the equations in the problem can be formulated in a Lax form, is the most effective
way of demonstrating its integrability and constructing the complete set of integrals of motion.
The Lax representation and its correspondingr-matrix structure for rational, hyperbolic and
trigonometricAn−1 CM models were constructed by Avanet al [5]; the Lax representation
for the elliptic CM models was constructed by Krichever [22] and the correspondingr-matrix
structure was given by Sklyanin [30] and Bradenet al [10]. A specific feature exists in
that ther-matrix of the Lax representation for these models turns out to be a dynamical
one (i.e. it depends upon the dynamical variables) and satisfies a dynamical Yang–Baxter
equation [6, 10, 11, 30]. Such structures also appear in the study of Ruijsenaars–Schneider
models, which are known as the relativistic Calogero–Moser models and can be related to the
soliton systems of the affine Toda field theories [11, 12, 27, 28]. Moreover, such a dynamical
r-matrix structure is connected with the Hamiltonian reduction of the cotangent bundle of
the Lie algebra for the Calogero–Moser model and the contangent bundle of the Lie group
for the Ruijsenaars–Schneider model [2, 16, 31]. This greatly promotes the study of the
classical (and quantum) dynamicalr-matrices (andR-matrix). A partial classification scheme
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has very recently been proposed for the dynamicalr-matrix obeying the particular version of
the dynamical Yang–Baxter equation [3, 14, 29]. However, at the time of writing a general
classification scheme such as exists in the case of non-dynamical classicalr-matrices thanks
to Belavin and Drinfeld [9] is still lacking.

Other difficulties presented by the dynamical aspect of ther-matrix also occur. (i) The
fundamental Poisson algebra of the Lax operator, whose structural constants are given by
a dynamicalr-matrix, is generally speaking no longer closed (cf the non-dynamical one).
(ii) Solution of the quantization problem and its geometrical interpretation is still an open
problem [30]. So far, only for one particular case—the spin generalization of the CM model—
has a proper algebraic setting (the Gervais–Neveu–Felder equation) been found [4] which
allows one to quantize the model. On the other hand, it is well known that the Lax representation
for a completely integrable models is not unique. The different Lax representations of an
integrable system are transformed under a similarity transformation from each other (only
for a finite-particle system, but for the field system it should be transformed under gauge
transformation from each other). However, the correspondingr-matrix should be transformed
under a ‘gauge’ transformation (see equation (5)), which is the classical dynamically twisting
relations [4] between ther-matrix. So, to overcome the above difficulties caused by the
dynamicalr-matrix, the question arises as to whether another Lax representation for the CM
model which has a non-dynamicalr-matrix structure can be found. The plan of our work
is to find such a ‘good’ Lax representation for the ellipticAn−1 CM model if it exists. In a
previous article [18], we succeeded in constructing a new Lax operator (cf Krichever’s [22])
for the ellipticAn−1 CM model withn = 2 and showing that the correspondingr-matrix is a
non-dynamical one, this being the classical eight-vertexr-matrix [20]. In the present paper,
extending our previous results [18], we construct a new Lax operator (cf Krichever’s) for the
ellipticAn−1 CM model with generaln (n > 2)which is ‘good’ in sense that the corresponding
r-matrix is non-dynamical, namely the classicalZn-symmetricr-matrix.

The paper is organized as follows. In section 2, from the classical dynamical twisting,
the condition for the existence of the ‘good’ Lax representation is found. In section 3, after
reviewing the quantumZn-symmetric Belavin model, we construct the classicalZn-symmetric
r-matrix. After reviewing Sklyanin’s work on the elliptic CM model in section 4, in section 5
we construct the ‘good’ Lax representation for the ellipticAn−1 CM model which possesses
a non-dynamicalr-matrix structure. Finally, we give a summary and discussion in section 6.
The proof of the main result (proposition 4) is given in an appendix.

2. The dynamical twisting of the classicalr-matrix

In this paper, we only deal with completely integrable finite-particle systems. In this section
we will review some general theories of completely integrable finite-particle systems

A Lax pair(L,M) consists of two functions on the phase space of the system with values
in some Lie algebrag, such that the evolution equations may be written in the following form:

dL

dt
= [L,M] (1)

where [, ] denotes the bracket in the Lie algebrag. Our interest in the existence of such a
pair lies in the fact that it allows for an easy construction of conserved quantities (integrals of
motion)—it follows that the adjoint-invariant quantities trLn are the integrals of motion. In
order to apply the Liouville theorem to this set of possible action variables we need them to be
Poisson-commuting. As shown in [7], for the commutativity of the integrals trLn of the Lax
operator it is neccessary and sufficient that the fundamental Poisson bracket{L1(u), L2(v)}



The r-matrix for the ellipticAn−1 Calogero–Moser model 1477

can be represented in the commutator form

{L1(u), L2(v)} = [r12(u, v), L1(u)] − [r21(v, u), L2(v)] (2)

where we use the notation

L1 ≡ L⊗ 1 L2 ≡ 1⊗ L r21 = Pr12P

andP is the permutation operator such thatPx ⊗ y = y ⊗ x.
Generally speaking, ther-matrix r12(u, v) does depend on the dynamical variables. For

some special cases wherer12(u, v) is independent of the dynamical variables, ther-matrix is
called the non-dynamicalr-matrix, and has been studied extensively [15]. In contrast to the
extensively studied case of the non-dynamicalr-matrix, no general theory of the dynamical
r-matrix exists at the moment, apart from a few concrete examples and observations. Still,
the collection of examples is rather sparse, and any new example of dynamicalr-matrix could
possibly contribute to better understanding of their algebraic and geometric nature.

The Poisson bracket structure (2) obeys a Jacobi identity which implies an algebraic
constraint for ther-matrix. Since ther-matrix may depend on the dynamical variables this
constraint takes a complicated form:[
L1, [r12, r13] + [r12, r23] + [r32, r13] + {L2, r13} − {L3, r12}

]
+ cycl. perm= 0. (3)

Using relevant particular cases of this general identity, one can obtain the classical Yang–
Baxter equation for the non-dynamicalr-matrix and the classical dynamical Yang–Baxter
equation [3, 7] for the dynamical one. It should be remarked that such a classification is by
no means unique, which drastically depend on the Lax representation that one choose for a
system. Namely, there is no one-to-one correspondence between a given dynamical system
and a definedr-matrix, a same dynamical system may have several Lax representations and
severalr-matrix . The different Lax representations of a system are conjugated with each
other: if (̃L, M̃) is one of other Lax pair of the same dynamical system conjugated with the
old one(L,M), it means that

dL̃

dt
= [L̃, M̃]

L̃(u) = g(u)L(u)g−1(u) M̃(u) = g(u)M(u)g−1(u)−
(

d

dt
g(u)

)
g−1(u)

(4)

whereg(u) ∈ G whose Lie algebra isg. Then, we have

Proposition 1. The Lax pair (̃L, M̃) has the followingr-matrix structure:

{L̃1(u), L̃2(v)} = [̃r12(u, v), L̃1(u)] − [̃r21(v, u), L̃2(v)] (4a)

where

r̃12(u, v) = g1(u)g2(v)r12(u, v)g
−1
1 (u)g−1

2 (v) + g2(v){g1(u), L2(v)}g−1
1 (u)g−1

2 (v)

+ 1
2

[{g1(u), g2(v)}g−1
1 (u)g−1

2 (v) , g2(v)L2(v)g
−1
2 (v)

]
. (5)

Proof. The proof is direct by substitution of (4) and (4a) in the fundamental Poisson bracket
and use of the following identity:[

[s12, L1], L2
] = [[s12, L2], L1

]
wheres12 is any matrix ong ⊗ g. �

It can be seen that: (i) the Lax operatorL is transformed under a similarity
transformation from the different Lax representation (only for finite-particle systems); (ii) The
correspondingM has undergone the usual gauge transformation; (iii) Ther-matrix is
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transformed as some generalized gauge transformation, which can be considered as the classical
version of the dynamically twisting relation between the quantumR-matrix [4]. Therefore,
it is of great value to find a ‘good’ Lax representation for a system if it exists, in which the
correspondingr-matrix is non-dynamical one and the extensively studied theories [4, 15] can
be directly applied to the system—such as the dressing transformation, quantization, etc.

Corollary to proposition 1. For given Lax pair(L,M) and the correspondingr-matrix, if
there exists ag such that

h12 =
{
g1(u)g2(v)r12(u, v)g

−1
1 (u)g−1

2 (v) + g2(v){g1(u), L2(v)}g−1
1 (u)g−1

2 (v)

+ 1
2

[{g1(u), g2(v)}g−1
1 (u)g−1

2 (v) , g2(v)L2(v)g
−1
2 (v)

]}
and ∂qi h12 = ∂pj h12 = 0 (6)

the non-dynamical Lax representation of the system exists.

By straightforward calculation, we also have

Proposition 2. The twisting Lax pair (̃L, M̃) and the correspondingr-matrix r̃12 satisfies

[L̃1, [̃r12, r̃13] + [ r̃12, r̃23] + [ r̃32, r̃13] + {L̃2, r̃13} − {L̃3, r̃12}] + cycl. perm= 0.

The main purpose of this paper is to find a ‘good’ Lax representation for the ellipticAn−1

CM model.

3. The elliptic function and the elliptic Zn-symmetricR- and r-matrices

We first briefly review the ellipticZn-symmetric quantumR-matrix which is related to theZn-
symmetric Belavin model [8, 19, 21, 25]. Forn ∈ Z+, n > 2, we define then × n matrices
h, g, Iα as

hij = δi+1,j modn gij = ωiδi,j Iα1,α2 ≡ Iα = gα2hα1

whereα1, α2 ∈ Zn andω = exp(2π
√−1
n
). We also define some elliptic functions

θ(j)(u) = θ
[ 1

2 − j

n

1
2

]
(u, nτ) σ (u) = θ

[ 1
2
1
2

]
(u, τ ) (7)

θ

[
a

b

]
(u, τ ) =

∞∑
m=−∞

exp
{√−1π

[
(m + a)2τ + 2(m + a)(z + b)

]}
θ ′(j)(u) = ∂u{θ(j)(u)} σ ′(u) = ∂u{σ(u)} ξ(u) = ∂u

{
ln σ(u)

}
(8)

E(u, v) = σ(u + v)

σ (u)σ (v)
(9)

whereτ is a complex number with Im(τ ) > 0. Then we define theZn-symmetric Belavin
R-matrix [19] as

Rlkij (v) =


θ
′(0)(0)σ (v)σ (w)

σ ′(0)θ(0)(v)σ (v +w)

θ(0)(v)θ(i−j)(v +w)

θ(i−l)(w)θ(l−j)(v)
if i + j = l + k modn

0 otherwise

(10)

wherew is a complex number which is called the crossing parameter of theR-matrix. We
should remark that ourR-matrix coincides with the usual one [19, 21] up to a scalar factor

θ
′(0)(0)σ (v)

σ ′(0)θ(0)(v)

n−1∏
j=1

θ(j)(v)

θ(j)(0)
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which is required to satisfy equation (15). TheR-matrix satisfies the quantum Yang–Baxter
equation (QYBE)

R12(v1− v2)R13(v1− v3)R23(v2 − v3) = R23(v2 − v3)R13(v1− v3)R12(v1− v2). (11)

Moreover, theR-matrix possesses in following(Zn ⊗ Zn)-symmetric properties

R12(v) = (a ⊗ a)R12(v)(a ⊗ a)−1 for a = g, h. (12)

We introduce ann⊗nmatrixT̂ (v), where the matrix elementŝT (v)ji are operators, which
satisfies the equation (also called a QYBE)

R12(v1− v2)T̂1(v1)T̂2(v2) = T̂2(v2)T̂1(v1)R12(v1− v2). (13)

Next we turn to the factorized difference representation for the operatorT̂ (v) [17, 19, 25].
Set ann⊗ n matrixA(u; q)

A(u; q)ij ≡ A(u; q1, q2, . . . , qn)
i
j = θ(i)

(
u + nqj −

n∑
k=1

qk +
n− 1

2

)
(14)

whereA(u, q)ij corresponds to the intertwiner functionϕ(i)j between theZn-symmetric Belavin
R-matrix and theA(1)n−1 face model [21] in [19]. Construct the operatorT̂ (u)

T̂ (u)ij = A(u + sw; q)ikA−1(u; q)kjDk (14a)

wheres is a complex number associated with the representation of the Sklyanin algebra [19]
and which will be related to the coupling constant of the ellipticAn−1 CM model, equation (A3),
andDk is a difference operator such that

Dkf (q) ≡ Dkf (q1, q2, . . . , qn) = f (q1, . . . , qk−1, qk − w, qk+1, . . . , qn).

Then following the results in [16], we have

Theorem 1 ( [16, 29, 30]).TheL-operatorT̂ (u) defined in (14a) satsifes the QYBE (13).

We can define a correspondingZn-symmetric (classical)r-matrix which has the following
relationship with theR-matrix:

R12(v)|w=0 = 1⊗ 1

R12(v) = 1⊗ 1 +wr12(v) + 0(w2) when the crossing parameterw −→ 0.
(15)

Then we have

Proposition 3. The corresponding ellipticZn-symmetricr-matrix is

rlkij (v) =


(1− δli )

θ
′(0)(0)θ(i−j)(v)

θ(l−j)(v)θ(i−l)(0)

+ δliδ
k
j

(
θ
′(i−j)(v)
θ(i−j)(v)

− σ
′(v)
σ (v)

)
if i + j = l + k modn

0 otherwise

(16)

and it satisfies the non-dynamical (classical) Yang–Baxter equation and antisymmetric
properties

[r12(v1− v2), r13(v1− v3)] + [r12(v1− v2), r23(v2 − v3)]

+ [r13(v1− v3), r23(v2 − v3)] = 0 (17)

−r21(−v) = r12(v). (18)
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Proof. Whenw −→ 0, we have the following asympotic properties:

σ(w) = wσ ′(0) + 0(w3) θ(0)(w) = wθ ′(0)(0) + 0(w3)

θ (i)(w) = θ(i)(0) +wθ
′(i)(0) + 0(w2) i 6= 0 modn.

Then, whenw −→ 0, we have

θ
′(0)(0)σ (v)

σ ′(0)θ(0)(v)

n−1∏
m=1

θ(m)(v)

θ(m)(0)
Rlkij (v)

= w(1− δli )
σ ′(o)
σ (v)

n−1∏
m=1

θ(m)(v)

θ(m)(0)

θ(0)(v)θ(i−j)(v)
θ(l−j)(v)θ(i−l)(v)

+ 0(w2)

+ δli
σ ′(0) + 0(w2)

σ (v) +wσ ′(v) + 0(w2)

×
n−1∏
m=1

θ(m)(v)

θ(m)(0)

θ (0)(v)(θ(i−j)(v) +wθ ′(i−j)(v) + 0(w2)

θ(i−j)(v)(θ ′(0)(0) + 0(w2))

=
n−1∏
m=1

θ(m)(v)

θ(m)(0)

σ ′(0)θ(0)(v)
θ ′(0)(0)σ (v)

δli δ
k
j +w

n−1∏
m=1

θ(m)(v)

θ(m)(0)

{
(1− δli )

σ ′(0)θ(0)(v)θ(i−j)(v)
σ (v)θ(l−j)(v)θ(i−l)(0)

+ δliδ
k
j

σ ′(0)θ(0)(v)
σ (v)θ ′(0)(0)

(
θ ′(i−j)(v)
θ(i−j)(v)

− σ
′(v)
σ (v)

)}
+ 0(w2).

By the definition of the classicalr-matrix from the quantum one, equation (15), we have (16).
The classical Yang–Baxter equation (17) is the direct results of the QYBE and the asympotic
properties (18). The antisymmetric properties of ther-matrix can be derived from the following
relations between theθ -functions:

θ(α)(v) = −e2
√−1πα θ(−α)(−v) θ ′(α)(v)

θ(α)(v)
= −θ

′(−α)(−v)
θ(−α)(−v) .

�

One can also check that the classicalr-matrix r12(u) possesses the following(Zn ⊗ Zn)-
symmetric properties:

r12(v) = (a ⊗ a)r12(v)(a ⊗ a)−1 for a = g, h.

4. Review of the ellipticAn−1 CM model

The ellipticAn−1 CM model is a system ofn one-dimensional particles interacting according
to the two-body potential

V (qij ) = γQ(qij ) qij = qi − qj i, j = 1, . . . , n (19)

Q(v)−Q(u) = E(u, v)E(u,−v) (20)

whereγ is the coupling constant,Q(u) is a Weierstrass function and the elliptic function
E(u, v) is defined in (9). In terms of the canonical variables{pi, qj } (i, j = 1, . . . , n) with
the canonical Poisson bracket

{pi, pj } = {ql, qk} = 0 {pi, qj } = δij i, j, k, l = 1, . . . , n (21)
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the Hamiltonian of the system is expressed as

H =
n∑
i=1

p2
i +

∑
i 6=j

V (qij ). (22)

The above Hamiltonian with the potential (19) is known to be completely integrable
[13, 22–24]. The most effective way to show its integrability is to construct the Lax
representation for the system. One Lax pair(L,M) was first found by Krichever [22]. The
Krichever Lax operator (orL-operator) is

Lij (u) = piδij + (1− δij )
√
γE(u, qji) (23)

whereu is spectra parameter and the motion equation can be rewritten in the Lax form

d

dt
L(u) = {L(u),H } = [L(u),M(u)].

The Hamiltionian defined in (22) can be rewritten in terms of the Poisson-commuting family
{trLl(u)} (l = 1, . . . , n), which forms the enough independent integrals

H = tr(L2(u)) + V (u). (24)

V (u) does not depend upon the dynamical variables and the identity (20) is used. The
r-matrix structure of this Lax operator was given by Sklyanin [30] and Bradenet al [10]. The
fundamental Poisson bracket of the Lax operator can be described in ther-matrix form [30]

{L1(u), L2(v)} = [r12(u, v), L1(u)] − [r21(v, u), L2(v)] (25)

and the dynamicalr-matrix r12(u, v) is

r12(u, v) = a
n∑
i=1

Eiiii +
∑
i 6=j

cijE
ij

ji +
∑
i 6=j

dij (E
ii
ij +Ejijj ) (26)

where

Elkij = Eli ⊗ Ekj a = riiii = −ξ(u− v)− ξ(v) (27)

cij = rijji =
√−γE(u− v, qij ) dij = riiij = rjijj = 1

2

√−γE(v, qij ) (28)

where the elliptic functionξ(u) is defined in (8). Sklyanin also shown that the dynamical
r-matrix r12(u, v) defined in (26) satisfies the dynamical Yang–Baxter (or generalized Yang–
Baxter) equation [30]

[R(123), L1] + [R(231), L2] + [R(321), L3] = 0 (29)

where

R(123) ≡ r(123) − {r13, L2} + {r12, L3}
and

r(123) ≡ [r12, r13] + [r12, r23] − [r13, r32].

The Jacobi identity of the fundamental Poisson bracket is the results of (29). Due to the
dynamical properties of ther-matrix r12(u, v), the Poisson bracket ofL-operator is no longer
closed. The quantum version of (29) and the generalized (dynamical) Yang–Baxter equation
has still not been found, except the spin generalization of the CM model for which the Gervais–
Neveu–Felder equation has been found [4, 30].
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5. The ‘good’ Lax representaion of the ellipticAn−1 CM model and its r-matrix

TheL-operator of the ellipticAn−1 CM model given by Krichever in (23) and the corresponding
r-matrixr12(u, v) given by Sklyanin in (26) lead to some difficulties [30] in the investigation of
the CM model. This motivates us to find a ‘good’ Lax representation of the CM model. As can
be seen from proposition 1 and its corollary in section 3, this means finding ag(u) in (4) which
satisfies (6). Fortunately, we can find such ag(u), from which we construct a newL-operator
L̃(u) of the ellipticAn−1 CM model (this kind ofL-operator does not always exist for a general
completely integrable system). The correspondingr-matrix of L̃(u) is purely numerical, and
is equal to the classicalZn-symmetricr-matrix. For comparison with theL-operator given by
Krichever, we call thisL-operator found by us the new Lax operator.

Define

g(u) = A(u; q)3(q) 3(q)ij = hi(q)δij
hj (q) ≡ hj (q1, . . . , qn) = 1∏

l 6=i σ (qil)
(30)

whereA(u; q)ij is defined in (14). Let us construct the newL-operator̃L(u):

L̃(u) = g(u)L(u)g−1(u)

M̃(u) = g(u)M(u)g−1(u)−
(

d

dt
g(u)

)
g−1(u).

(31)

Then we have

Proposition 4. The fundamental Poisson bracket of theL-operatorL̃(u) can be written in the
usual Poisson–Lie form with a purely numericalr-matrix

{L̃1(u), L̃2(v)} = [̃r12(u− v), L̃1(u) + L̃2(v)] (32)

and the correspondingr-matrix r̃12(u) is a non-dynamical one, namely theZn-symmetric
r-matrix defined in (16).

Proof. The proof is given in the appendix.

The most important property of this new Lax operator is that the correspondingr-matrix
does not depend upon the dynamical variables. Consequently, the extensively studied theory
for the non-dynamical system [15] can be used to study the ellipticAn−1 CM model.

The Zn-symmetricr-matrix r̃12(u) can also be obtained from the classical dynamical
twisting as follows:

r̃12(u, v) = g1(u)g2(v)r12(u, v)g
−1
1 (u)g−1

2 (v)

+g2(v){g1(u), L2(v)}g−1
1 (u)g−1

2 (v) (33)

up to some matrix which commutes withL1(u) +L2(v).
The standard Poisson–Lie bracket (32) ofL-operator̃L(u) and the numericalr-matrix

r̃12(u) satisfying the classical Yang–Baxter equation (17) and antisymmetry (18) make it
possible to construct the quantum theory of the ellipticAn−1 CM model. Moreover, the
numericalr-matrix r̃12(u) could provide a means of constructing a separation of variables
for the ellipticAn−1 CM model in the same manner as in the case of the integrable magnetic
chain [30]. It also makes it possible to construct the dressing transformation for the model. The
dressing group of this system would be analogous of the semi-classical limit of theZn Sklyanin
algebra.
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6. Discussion

In this paper, we have constructed the non-dynamicalr-matrix structure just for the elliptic
An−1 Calogero–Moser model. Such a ‘good’ Lax representation for the degenerate case, the
rational, trigonometric and hyperbolic CM model, could also could be constructed. It would
also be very interesting to construct such a classical dynamical twisting for the Ruijsenaars–
Schneider model.

Appendix. Proof of proposition 4

In this appendix we give the proof the proposition 4, which is the main result of our paper.
Set the classicalL-operatorT (u) as follows:

T (u)ij =
∑
k

A(u; q)ikA−1(u; q)kjpk − s(∂uA(u; q))ikA−1(u; q)kj
where{pk} is the classical moment which is conjugated with{qk}, and{pi, qj } satisfies the
canonical Poisson bracket (21).

Lemma A1. The classical operatorT (u) has the standard Poisson–Lie bracket

{T1(u), T2(v)} = [̃r12(u− v), T1(u) + T2(v)] (A1)

where ther-matrix r̃12(u) is theZn-symmetricr-matrix defined in (16).

Proof. Whenw −→ 0, the quantum differenceL-operator̂T (u) has the following asympotic
properties:

T̂ (u)ij =
∑
k

A(u; q)ikA−1(u; q)kj − w
∑
k

A(u; q)ikA−1(u; q)kj
∂

∂qk

+ sw
∑
k

(∂uA(u; q))ikA−1(u; q)kj + 0(w2)

≡ δij − wT̂ (1)(u)ij + 0(w2)

where

T̂ (1)(u)ij =
∑
k

A(u; q)ikA−1(u; q)kj
∂

∂qk
− s

∑
k

(∂uA(u; q))ikA−1(u; q)kj .

From the QYBE (13) we have

[T̂ (1)1 (u), T̂
(1)
2 (v)] = [̃r12(u− v), T̂ (1)1 (u) + T̂ (1)2 (v)].

If we usepk instead of the differential∂
∂qk

and the classicalL-operatorT (u) instead of̂T (1)(u),
we have equation (A1). �
Lemma A2. TheT (u)ij can be written explictly as follows:

T (u)ij =
∑
k,k′

g̃(u)ikT (u)
k
k′ g̃
−1(u)k

′
j ≡

{
(A(u; q)3(q))T (u)(A(u; q)3(q))−1}i

j
(A2)

whereT (u) and3(q) are

T (u)ij =
(
pi − ∂

∂qk
ln1s/n(q)

)
δij +
√
γ (1− δij )E(u; qji)

(A3)

1(q) =
∏
i<j

σ (qij ) coupling constantγ =
(
− sσ

′(0)
n

)2

3(q)ij =
1∏

l 6=i σ (qil)
δij .
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Proof. In order to calculate the matrix element(∂u(A(u; q))A−1(u; q), we first consider

A(u +w; q)A−1(u; q) = A(u; q)[A−1(u; q)A(u +w; q)]A−1(u; q).
From the defintion ofA(u; q)ij , equation (14), and the Vandermonde-type determinat formula

det[θ(j)(uk)] = constant× σ
(

1

n

∑
k

uk − n− 1

2

) ∏
16j<k6n

σ

(
uk − uj
n

)
where the constant does not depend upon{uk}, we have[

A−1(u; q)A(u +w; q)]i
j
=
∑
k

A−1(u; q)ikA(u +w; q)kj

= σ(w/n + u + qji)

σ (u)

∏
k 6=i

σ (w/n + qjk)

σ (qik)
.

We then have

(A−1(u; q)∂uA(u; q))ij =
∂

∂w

{
σ(w/n + u + qji)

σ (u)

∏
k 6=i

σ (w/n + qjk)

σ (qik)

}∣∣∣∣∣
w=0

= 1

n

{
σ ′(u)
σ (u)

δij +
σ(u + qji)

σ (u)

(
δij

∑
k 6=i

σ ′(qik)
σ (qik)

+ (1− δij )σ ′(0)
∏
k 6=i,j σ (qjk)∏
k 6=i σ (qik)

)}

= 1

n

{(
σ ′(u)
σ (u)

+
∑
k 6=i

σ ′(qik)
σ (qik)

)
δij + (1− δij )

σ ′(0)σ (u + qji)

σ (u)σ (qji)

∏
k 6=j σ (qjk)∏
k 6=i σ (qik)

}

= 1

n

{(
σ ′(u)
σ (u)

+
∂

∂qj

(
ln1(q)

))
δij − (1− δij )(−σ ′(0))E(u; qji)

∏
k 6=j σ (qjk)∏
k 6=i σ (qik)

}

= 1∏
k 6=i σ (qik)

{(
σ ′(u)
nσ(u)

+
∂

∂qj

(
ln11/n(q)

))
δij

− (1− δij )
(
− σ

′(0)
n

)
E(u; qji)

}∏
k 6=i
σ (qik).

SubstitutingA−1(u; q)∂uA(u; q) in the defintion ofT (u), we have

T (u)ij =
∑
k

A(u; q)ikpkA−1(u; q)kj − s
∑
k,k′

A(u; q)ik(A−1(u; q)∂uA(u; q))kk′A−1(u; q)k′j

= (A(u; q)3(q))ik
{(
pk − sσ

′(u)
nσ(u)

+
∂

∂qk

(
ln1s/n(q)

))
δkk′

+ (1− δkk′)
√
γE(u; qji)

}
(3(q)−1)A(u; q)−1)k

′
j .

�

We consider a mappi −→ pi − ∂

∂qi

(
ln1s/n(q)

)
qi −→ qi.

(A4)

Lemma A3. The map defined in (A4) is a Poisson map [1] (or a canonical transformation).
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Proof. Lemma A3 can be proved by considering the symplectic two-form∑
i

d

(
pi − ∂

∂qi
ln1s/n(q)

)
∧ dqi

=
∑
i

dpi ∧ dqi +
∑
ij

(
∂2

∂qi∂qj
ln1s/n(q)

)
dqi ∧ dqj

=
∑
i

dpi ∧ dqi.

�
Since the Poisson bracket is invariant under the Poisson map [1], we have proposition 4

from lemmas A1 and A3.
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